
8 principles for enabling build/measure/learn
lean engineering in action

eBay Classifieds TechCon
June 2013

@billwscott

Sr. Director
User Interface Engineering
@paypal

continuous customer feedback (GOOB)

customer metrics drive everything

think it. build it. ship it. tweak it

fail fast. learn fast.

lots of experimentation... build/measure/learn

a different view of
engineering

paypal vs netflix
contrast this with a large enterprise like paypal (circa 2011)

guess what i found (in 2011)

roll your own. disconnected delivery
experience. culture of long shelf life.

inward focus. risk averse.

In 2011, even a simple
content copy change

could take as much as 6
weeks to get live to site

new dna inserted
jan 2012
fleshed out ui layer that could support rapid
experimentation

march 2012
david Marcus becomes president of PayPal

april 2012
formed lean ux team to reinvent checkout
experience

hermes project lean ux/engineering in action

from whiteboard to code from code to usability
learningsstart again

change has started working its way out

change has started working its way out

lean startup movement
founded on build/measure/learn cycle
get out of the building (GOOB)
invalidate your risky assumptions
fail fast, learn fast
get to the pivot
go for the minimal viable product (MVP)

lean ux
designing products for build/measure/learn
requires 3 rules to be followed at all times

get to & maintain a shared understanding
form deep collaboration across disciplines
keep continuous customer feedback flowing

purpose of lean engineering

build
measure
learn

LEAN
ENGINEERING

Enabling Build/
Measure/Learn

with Lean Startup
Principles

build
embrace
continuous delivery

make mistakes fast

measure learn

the etsy way. Kellan Elliott-McCrea, CTO etsy

use metrics driven
development

know that you made a
mistake

blameless post
mortem

learn from your
mistakes

http://www.linkedin.com/in/kellanem
http://www.linkedin.com/in/kellanem

LEAN
ENGINEERING

 8 principles for enabling
build/measure/learn

1. focus on learning, not delivery

one of our biggest challenges is moving
from a culture of delivery to a
culture of learning

too many teams can create silos within the
exerience
common silos that can affect experience:
• number of scrum teams
• specialization of skills
• device channels
• regional adaptations

CE2

don’t let delivery drive
experience

2. build a culture of rapid experimentation

long shelf life for software

when software is not dynamically updatable
when it takes herculean effort to deliver

result
engineers run the asylum
delivery dates drive the experience
BDUF & waterfall prevail

16 different test cells in the initial PS3 Launch (2010)

focus is on build/measure/learn

four distinct PS3 experiences launched on same day

typical netflix release

ramping vs experimenting

ramping model results in one
experience (with some tweaks along
the way) after a long ramp up time

experimentation model results in
many experiences being tested all
along the way

avoid disconnected
delivery experience
circa 1985

deliver to disk then to user

everything was focused on getting it
perfect for stamping on the disk

no user in the loop. experience
happened somewhere down the
supply chain

3. design for volatility

the epiphany

you have to engineer
for volatility

change is the norm

experimentation is not a one time event

launching a product is giving birth to the
product. the product’s life just begins.

design for throwaway-ability

majority of the
experience code
written is thrown

away in a year

the ui layer is the

experimentation layer

experiences must learn

Our software is always tearing itself apart
(or should be)

Recognize that different layers change at
different velocities

All buildings are predictions.
All predictions are wrong.

There's no escape from this grim
syllogism, but it can be softened.

Stewart Brand

4. embrace open source

building experiences
circa 1985

merry band of three. dropped out of
college for semester. it was nirvana.

however...

roll your own “everything”

(close your eyes & imagine)
no internet. no google. no blogs. no email. no
blogs. no stackoverflow. no github. no twitter.
much of the software era has been about
building from scratch.
of course open source was gaining momentum.
unix. gnu. linux. perl. mozilla.

use open source religiously

work in open source model
internal github revolutionizing
our internal development

rapidly replacing centralized
platform teams

innovation democratized

every developer encouraged
to experiment and generate repos
to share as well as to fork/pull request

give back to open source
we have projects that we will open source

node webcore (similar to yeoman)

we are contributing back to open source
contributions to bootstrap (for accessibility)
contributions to bootstrap (for internationalization)
core committer on dustjs project

using github for continuous *
use github for continuous integration

starting to use github repo model for continuous deployment
marketing pages
product pages
content updates & triggers into i18n, l10n, adaptation
components

5. map lean onto agile

btw, agile doesn’t have a brain...
agile has been a big step in the right direction

but is an engineering discipline

doesn’t address the full life cycle

agile has become big business and sometimes collapses under the weight
of “ceremonies” (process)

but agile is a good “engine” for delivery if you know what to roughly build

agile needs a brain...

lean ux: enable a brain for agile

 user interface engineering - agile scrum team (production)

 lean ux - lean team track (prototyping)

 engineering - agile scrum teamsprint 0

usability usability usability usability usability

release release release release

{agile

6. make your product a living spec

create a living spec

enabling the prototype

learning

stack circa 2011/early 2012

simple change could take minutes
to see

follows an “enterprise application”
model. ui gets built into the “app”

java

jsp***

restricted
capabilities*

prototyping
was hard

“ui bits” could
only live here

* assumed client developers were low-skill
* required server side java eng for simple client changes
** java server pages. server-side java templating solution

server side
components**

client

server

we blended prototype & production

we enabled the “ui bits” to be
portable between the prototyping
stack and the production stackjava (rhinoscript)node.js

{dust}
JS template

prototype
stack

production
stack

{dust}
JS template

either stack

java (rhinoscript)

production
stack

{dust}
JS template

one stack: prototype & production

node.js

{dust}
JS template

prototype
stack

the final step is we made the
prototype stack and production
stack the same technology
throughout the application stack

7. refactor your way out of debt

technical debt
rarely do you have a clean slate
generally you will have to refactor your
way to a nimble framework

we separated the ui bits
code = JS
(backbone)

templates =
JS

{dust}

style = CSS
(less) images

re-engineered the user
interface stack so that
the only artifacts are:
• javascript
• css
• images

ditched the server-side
mentality to creating UIs
• no more server-side

only templates
• no more server-side

components
• no more server-side

managing the ui

code = JS
(backbone)

templates =
JS

{dust}

style = CSS
(less) images

we used javascript templating

templates get converted
to javascript

<p>Hello {name}</p>

JavaScript compiles to...

javascript
executed
to generate ui

we used natural web artifacts - “web bits”

server-side language independent

server/client agnostic

CDN ready

cacheable

rapid to create

code = JS
(backbone)

templates =
JS

{dust}

style = CSS
(less) images

ensured we could run on new & legacy

JS templating can be run
in client browser or
server on the production
stack

we can drag & drop the
ui bits from prototyping
stack to the production
stack

java
(rhinoscript)node.js

{dust}
JS template

prototype
stack

production
stack

{dust}
JS template

client OR

server

either stack

experience debt
don’t just think about our technical debt
consider our “experience debt”
cripples our ability to capture market and
inhibits learning

8. learn across all channels

mobile strategy ≠ just iOS app
native apps make it easier to create a rich
experience

however, they are limited in reach and in
learning capability

app install rates will only be a subset of the
customer base

you need both a native and html5 strategy in
order to maximize learning

http://tex.stackexchange.com/questions/108193/not-equal-sign-with-a-vertical-bar
http://tex.stackexchange.com/questions/108193/not-equal-sign-with-a-vertical-bar

html5 is critical to learning strategy

new users will see your html5 experience

the onramp to onboarding is the lowly link

network delivery makes a/b testing
straightforward

netflix gambled on html5 for mobile (iOS,
android) and for game consoles, bluray players,
hdtvs, etc.

why? build/measure/learn. network delivery.

summary
rethink engineering. every dimension of your engineering needs to be about
enabling build/measure/learn

technology. but not for tech sake. we are doing it for the experience to
support lean startup principles.

process. enabled lean ux and put a brain on agile.

people. revitalizing our existing talent and started attracting new talent.

before

after

designing web interfaces
O’Reilly

picture credits
http://www.flickr.com/photos/decade_null/2053134780/
http://www.flickr.com/photos/therevsteve/3104267109/
http://www.flickr.com/photos/juanpol/16287486/
http://www.flickr.com/photos/giesenbauer/4092794246/
http://www.flickr.com/photos/not_wise/182849352/
http://www.flickr.com/photos/mbiskoping/6075387388/
http://www.flickr.com/photos/37217398@N02/3442676067/
http://www.flickr.com/photos/proimos/3473264448/
http://www.flickr.com/photos/epsos/8463683689/
http://www.flickr.com/photos/stuckincustoms/2380543038/
http://www.flickr.com/photos/matthewpaulson/6176787688/
http://www.flickr.com/photos/90585146@N08/8222922317/
http://www.flickr.com/photos/cote/63914774/
http://www.flickr.com/photos/olvrbrown/4542851399/
http://www.flickr.com/photos/donpezzano/3257999898/

follow me on twitter
@billwscott

Designing Web Interfaces
O’Reilly

Bill Scott & Theresa Neil

http://www.flickr.com/photos/therevsteve/3104267109/sizes/o/
http://www.flickr.com/photos/therevsteve/3104267109/sizes/o/
http://www.flickr.com/photos/therevsteve/3104267109/sizes/o/
http://www.flickr.com/photos/therevsteve/3104267109/sizes/o/
http://www.flickr.com/photos/juanpol/16287486/sizes/z/
http://www.flickr.com/photos/juanpol/16287486/sizes/z/
http://www.flickr.com/photos/giesenbauer/4092794246/sizes/l/
http://www.flickr.com/photos/giesenbauer/4092794246/sizes/l/
http://www.flickr.com/photos/not_wise/182849352/sizes/l/
http://www.flickr.com/photos/not_wise/182849352/sizes/l/
http://www.flickr.com/photos/mbiskoping/6075387388/
http://www.flickr.com/photos/mbiskoping/6075387388/
http://www.flickr.com/photos/37217398@N02/3442676067/sizes/l/
http://www.flickr.com/photos/37217398@N02/3442676067/sizes/l/
http://www.flickr.com/photos/proimos/3473264448/sizes/l/
http://www.flickr.com/photos/proimos/3473264448/sizes/l/
http://www.flickr.com/photos/epsos/8463683689/sizes/l/
http://www.flickr.com/photos/epsos/8463683689/sizes/l/
http://www.flickr.com/photos/stuckincustoms/2380543038/
http://www.flickr.com/photos/stuckincustoms/2380543038/
http://www.flickr.com/photos/stuckincustoms/2380543038/
http://www.flickr.com/photos/stuckincustoms/2380543038/
http://www.flickr.com/photos/matthewpaulson/6176787688/
http://www.flickr.com/photos/matthewpaulson/6176787688/
http://www.flickr.com/photos/stuckincustoms/2380543038/
http://www.flickr.com/photos/stuckincustoms/2380543038/
http://www.flickr.com/photos/90585146@N08/8222922317/
http://www.flickr.com/photos/90585146@N08/8222922317/
http://www.flickr.com/photos/90585146@N08/8222922317/
http://www.flickr.com/photos/90585146@N08/8222922317/
http://www.flickr.com/photos/90585146@N08/8222922317/
http://www.flickr.com/photos/90585146@N08/8222922317/
http://www.flickr.com/photos/90585146@N08/8222922317/
http://www.flickr.com/photos/90585146@N08/8222922317/
http://www.flickr.com/photos/stuckincustoms/2380543038/
http://www.flickr.com/photos/stuckincustoms/2380543038/

