
Back to the Future
Lessons from the Past for Today’s Web Developers

Bill Scott
2008 Yahoo! Front End Developer’s Summit

10.08.2008

1

“There's an old saying about
those who forget history. I don't

remember it, but it's good.”

Stephen Colbert, The Colbert Report, March 10, 2008

2

http://www.quotationspage.com/quotes/Stephen_Colbert/
http://www.quotationspage.com/quotes/Stephen_Colbert/

Lessons from the Past

Importance of Tools

Proficiency in Debugging

Understanding the Leaky Abstraction

Being Pixel Retentive

Inspired by Problems

Students of Beautiful Code

3

my history

4

importance of tools

5

importance of tools

5

the web’s slide rule

javascript alert. microsoft debugger.
document.write(). innerHTML().

6

explosion of tools
firebug debugger. yslow. hammerhead.

developer toolbar. drosera. webkit web
inspector. webkit network timeline. fiddler.
charles. httpwatch. firefox throttle. firebug
profiler. jiffy. episodes. cuzillion. ua profiler.

greasemonkey. dom inspector. html validator.
live http headers. tamper data. venkman.

firecookie. selenium. ie8 debugger. chrome
debugger. foxyproxy. firephp. pixel perfect.

dragonfly. debugbar. modify headers. xray. design
bookmarklet. jsmin. jslint.

7

missing tools

simple prototyping

visibility into browser engine

css layout & refactoring tools

8

prototyping

flash world: strong

DHTML prototyping: still weak
jQuery

yui 3.0

protoscript (experimental)

9

[protoscript slide]

10

browser performance visibility

no real visibility into
memory consumption

processing times

javascript engine

rendering engine

reflow times

page event timing (Episodes, Jiffy)

11

[episodes slide, jiffy extension & round trip extension]

12

css refactoring

firebug css panel

dust-me selectors extension

css lint

but no reliable way to clean up CSS

13

proficiency in debugging

14

15

15

example: netflix Q performance

IE 7
> 250

16

example: gzip breaks safari

page weight dropped by 6x

outbound network traffic dropped in half

17

rules of debugging
1. understand the system

2. make it fail

3. quit thinking and look

4. divide and conquer

5. change one thing at a time

6. keep an audit trail

7. check the plug

8. get a fresh view

9. if you didn't fix It, it ain't fixed

http://www.whyprogramsfail.com/toc.php

http://www.debuggingrules.com/

18

http://www.whyprogramsfail.com/toc.php
http://www.whyprogramsfail.com/toc.php
http://www.debuggingrules.com
http://www.debuggingrules.com

understanding the leaky
abstraction

19

understanding deep magic

story of GATO development

barely understood the language

barely understood mac development

afterward determined to understand the deep magic

disassembled ROM, commented all the code

wrote numerous utilities

asked what happens from click to render

20

building on abstractions

boosts productivity

but what happens when you have to look underneath?

the “leaky abstraction” syndrome

it’s easy to just fiddle till it works but not stop to ask why

21

example: closures

Most candidates we interview

cannot accurately explain a closure

cannot detect common errors with closures

If you use closures you should understand closures

When something goes wrong you have to understand it

	

 var alertFuncs = [];
	

 for(var i = 0; i < 3; i++) {
	

 var alertFunc = function(value) {
	

 return function() {
	

 alert(value);
	

 }
	

 }(i);
	

 	

 alertFuncs.push(alertFunc);
	

 }

	

 for (var i = 0; i < alertFuncs.length; i++) {
	

 	

 alertFuncs[i]();
	

 }

22

example: toolkits

libraries have been a big boost to our community

however, it’s easy to end up knowing a library but not really
what the library does for them

it’s ok to focus on the usage of a library, but a little dose of
curiosity a day will teach you a lot

23

example: end to end

http request to http response is basic

but do we understand what happens and when?

getting a picture of the overall picture helps us track down
performance issues

24

being pixel retentive

25

end-point paranoia (quickdraw)
coordinate system infinitely thin lines between pixels

filling or framing a rectangle: 0,0,8,4

points anchor to thin grid, to right & below

(0,0) (8,0)

(8,4)(0,4)

26

27

css reset

28

css frameworks

29

YUI
setX(), setY()

30

interactive intelligence

31

drag and drop

interesting moments grid

subtlety of drag & drop

32

33

inspired by problems

34

35

chasing ideas

36

belief in creative process

37

saying yes

38

students of beautiful code

39

wang calculator

Find out if the given number was prime

Instructions: J if 0, J if +, J if <>0, J if Err,
Store, Recall, Mark, Search, Set PC, Indir

Sieve of Eratosthenes

40

41

macintosh patent for regions

42

(0,0) (14,0)

(14,6)(9,6)

(20,10)
(9,10)

(5,12) (13,12)

(13,17)(5,17)

(0,20) (20,20)

0, 0, 14, 32678,
6, 9, 14, 32768,
10, 9, 20, 32768,
12, 5, 13, 32768,
17, 5, 13, 32768,
20, 0, 20, 32768

43

macpaint
MC68000 MOVEM 32 32 32 32 32 32 32 32 32 32 32 32 32

44

html*

45

hacker?

46

event-driven

47

objects

48

separation of concerns

49

model-view-controller

50

style-behavior-logic

51

patterns

52

53

Make it right before you make it fast. Make
it clear before you make it faster. Keep it

right when you make it faster.

54

Where there are two bugs, there is likely
to be a third.

55

Make sure your code 'does nothing'
gracefully.

56

Premature optimization is the root of all
evil.

57

1978
58

59

Lessons from the Past

Importance of Tools

Proficiency in Debugging

Understanding the Leaky Abstraction

Being Pixel Retentive

Inspired by Problems

Students of Beautiful Code

60

Credits
http://flickr.com/photos/rogersmith/53912456/

http://flickr.com/photos/threesixes/12169049/

http://flickr.com/photos/playstar_rocker/2626983033/

http://flickr.com/photos/jakecaptive/49915119/

http://www.oldcalculatormuseum.com/wang600.html

http://flickr.com/photos/trainor/451799414/

http://flickr.com/photos/tom-b/2441980046/

http://www.1000bit.it/support/manuali/apple/lisa/LisaPatentQuickDraw.pdf

http://en.wikipedia.org/wiki/Image:TI-59.jpg

61

http://flickr.com/photos/rogersmith/53912456/
http://flickr.com/photos/rogersmith/53912456/
http://flickr.com/photos/threesixes/12169049/
http://flickr.com/photos/threesixes/12169049/
http://flickr.com/photos/playstar_rocker/2626983033/
http://flickr.com/photos/playstar_rocker/2626983033/
http://flickr.com/photos/jakecaptive/49915119/
http://flickr.com/photos/jakecaptive/49915119/
http://www.oldcalculatormuseum.com/wang600.html
http://www.oldcalculatormuseum.com/wang600.html
http://flickr.com/photos/trainor/451799414/
http://flickr.com/photos/trainor/451799414/
http://flickr.com/photos/tom-b/2441980046/
http://flickr.com/photos/tom-b/2441980046/
http://www.1000bit.it/support/manuali/apple/lisa/LisaPatentQuickDraw.pdf
http://www.1000bit.it/support/manuali/apple/lisa/LisaPatentQuickDraw.pdf
http://en.wikipedia.org/wiki/Image:TI-59.jpg
http://en.wikipedia.org/wiki/Image:TI-59.jpg

