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“There's an old saying about 
those who forget history. I don't 

remember it, but it's good.”

Stephen Colbert, The Colbert Report, March 10, 2008
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my history
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importance of tools
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importance of tools
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the web’s slide rule

javascript alert. microsoft debugger. 
document.write(). innerHTML().
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explosion of tools
firebug debugger. yslow. hammerhead. 

developer toolbar. drosera. webkit web 
inspector. webkit network timeline. fiddler. 
charles. httpwatch. firefox throttle. firebug 
profiler. jiffy. episodes. cuzillion. ua profiler. 

greasemonkey. dom inspector. html validator. 
live http headers. tamper data. venkman. 

firecookie. selenium. ie8 debugger. chrome 
debugger. foxyproxy. firephp. pixel perfect. 

dragonfly. debugbar. modify headers. xray. design 
bookmarklet. jsmin. jslint.
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missing tools

simple prototyping

visibility into browser engine

css layout & refactoring tools
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prototyping

flash world: strong

DHTML prototyping: still weak
jQuery

yui 3.0

protoscript (experimental)
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[protoscript slide]
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browser performance visibility

no real visibility into
memory consumption

processing times 

javascript engine

rendering engine

reflow times

page event timing (Episodes, Jiffy)
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[episodes slide, jiffy extension & round trip extension]
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css refactoring

firebug css panel

dust-me selectors extension

css lint

but no reliable way to clean up CSS
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proficiency in debugging
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example: netflix Q performance

IE 7
> 250
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example: gzip breaks safari

page weight dropped by 6x

outbound network traffic dropped in half
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rules of debugging
1. understand the system 

2. make it fail 

3. quit thinking and look 

4. divide and conquer 

5. change one thing at a time 

6. keep an audit trail 

7. check the plug 

8. get a fresh view 

9. if you didn't fix It, it ain't fixed 

http://www.whyprogramsfail.com/toc.php

http://www.debuggingrules.com/
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http://www.whyprogramsfail.com/toc.php
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understanding the leaky 
abstraction
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understanding deep magic

story of GATO development

barely understood the language

barely understood mac development

afterward determined to understand the deep magic

disassembled ROM, commented all the code

wrote numerous utilities

asked what happens from click to render
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building on abstractions

boosts productivity

but what happens when you have to look underneath?

the “leaky abstraction” syndrome

it’s easy to just fiddle till it works but not stop to ask why
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example: closures

Most candidates we interview 

cannot accurately explain a closure

cannot detect common errors with closures

If you use closures you should understand closures

When something goes wrong you have to understand it

	

 var alertFuncs = [];
	

 for(var i = 0; i < 3; i++) {
	

      var alertFunc = function(value) {
	

          return function() {
	

             alert(value);
	

          }
	

      }(i);
	

 	

 alertFuncs.push(alertFunc);
	

 }

	

 for (var i = 0; i < alertFuncs.length; i++) {
	

 	

 alertFuncs[i](); 
	

 }
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example: toolkits

libraries have been a big boost to our community

however, it’s easy to end up knowing a library but not really 
what the library does for them

it’s ok to focus on the usage of a library, but a little dose of 
curiosity a day will teach you a lot
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example: end to end

http request to http response is basic

but do we understand what happens and when?

getting a picture of the overall picture helps us track down 
performance issues 
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being pixel retentive
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end-point paranoia (quickdraw)
coordinate system infinitely thin lines between pixels

filling or framing a rectangle: 0,0,8,4

points anchor to thin grid, to right & below

(0,0) (8,0)

(8,4)(0,4)
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css reset
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css frameworks
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YUI
setX(), setY()
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interactive intelligence
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drag and drop

interesting moments grid

subtlety of drag & drop
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inspired by problems
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chasing ideas
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belief in creative process

37



saying yes
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students of beautiful code
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wang calculator

Find out if the given number was prime

Instructions: J if 0, J if +, J if <>0, J if Err,
Store, Recall, Mark, Search, Set PC,  Indir

Sieve of Eratosthenes
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macintosh patent for regions

42



(0,0) (14,0)

(14,6)(9,6)

(20,10)
(9,10)

(5,12) (13,12)

(13,17)(5,17)

(0,20) (20,20)

0, 0, 14, 32678, 
6, 9, 14, 32768, 
10, 9, 20, 32768, 
12, 5, 13, 32768, 
17, 5, 13, 32768, 
20, 0, 20, 32768
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macpaint 
MC68000 MOVEM 32 32 32 32 32 32 32 32 32 32 32 32 32
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html* 
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hacker? 
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event-driven
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objects
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separation of concerns
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model-view-controller
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style-behavior-logic
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patterns
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Make it right before you make it fast. Make 
it clear before you make it faster. Keep it 

right when you make it faster.
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Where there are two bugs, there is likely 
to be a third.
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Make sure your code 'does nothing' 
gracefully.

56



Premature optimization is the root of all 
evil.
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1978
58
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